Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In hypoxia, air-breathing fish obtain O2from the air but continue to excrete CO2into the water. Consequently, it is believed that some O2obtained by air-breathing is lost at the gills in hypoxic water.Pangasionodon hypophthalmusis an air-breathing catfish with very large gills from the Mekong River basin where it is cultured in hypoxic ponds. To understand howP. hypophthalmuscan maintain high growth in hypoxia with the presumed O2loss, we quantified respiratory gas exchange in air and water. In severe hypoxia (PO2: ≈ 1.5 mmHg), it lost a mere 4.9% of its aerial O2uptake, while maintaining aquatic CO2excretion at 91% of the total. Further, even small elevations in water PO2rapidly reduced this minor loss. Charting the cardiovascular bauplan across the branchial basket showed four ventral aortas leaving the bulbus arteriosus, with the first and second gill arches draining into the dorsal aorta while the third and fourth gill arches drain into the coeliacomesenteric artery supplying the gut and the highly trabeculated respiratory swim-bladder. Substantial flow changes across these two arterial systems from normoxic to hypoxic water were not found. We conclude that the proposed branchial oxygen loss in air-breathing fish is likely only a minor inefficiency.more » « less
-
null (Ed.)Previously, we showed that the evolution of high acuity vision in fishes was directly associated with their unique pH-sensitive hemoglobins that allow O 2 to be delivered to the retina at PO 2 s more than ten-fold that of arterial blood (Damsgaard et al., 2019). Here, we show strong evidence that vacuolar-type H + -ATPase and plasma-accessible carbonic anhydrase in the vascular structure supplying the retina act together to acidify the red blood cell leading to O 2 secretion. In vivo data indicate that this pathway primarily affects the oxygenation of the inner retina involved in signal processing and transduction, and that the evolution of this pathway was tightly associated with the morphological expansion of the inner retina. We conclude that this mechanism for retinal oxygenation played a vital role in the adaptive evolution of vision in teleost fishes.more » « less
-
null (Ed.)The retina has a very high energy demand but lacks an internal blood supply in most vertebrates. Here we explore the hypothesis that oxygen diffusion limited the evolution of retinal morphology by reconstructing the evolution of retinal thickness and the various mechanisms for retinal oxygen supply, including capillarization and acid-induced haemoglobin oxygen unloading. We show that a common ancestor of bony fishes likely had a thin retina without additional retinal oxygen supply mechanisms and that three different types of retinal capillaries were gained and lost independently multiple times during the radiation of vertebrates, and that these were invariably associated with parallel changes in retinal thickness. Since retinal thickness confers multiple advantages to vision, we propose that insufficient retinal oxygen supply constrained the functional evolution of the eye in early vertebrates, and that recurrent origins of additional retinal oxygen supply mechanisms facilitated the phenotypic evolution of improved functional eye morphology.more » « less
An official website of the United States government
